Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mol Pharm ; 18(6): 2233-2241, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1233685

ABSTRACT

Eliciting a robust immune response at mucosal sites is critical in preventing the entry of mucosal pathogens such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This task is challenging to achieve without the inclusion of a strong and safe mucosal adjuvant. Previously, inulin acetate (InAc), a plant-based polymer, is shown to activate toll-like receptor-4 (TLR4) and elicit a robust systemic immune response as a vaccine adjuvant. This study investigates the potential of nanoparticles prepared with InAc (InAc-NPs) as an intranasal vaccine delivery system to generate both mucosal and systemic immune responses. InAc-NPs (∼250 nm in diameter) activated wild-type (WT) macrophages but failed to activate macrophages from TLR4 knockout mice or WT macrophages when pretreated with a TLR4 antagonist (lipopolysaccharide-RS (LPS-RS)), which indicates the selective nature of a InAc-based nanodelivery system as a TLR4 agonist. Intranasal immunization using antigen-loaded InAc-NPs generated ∼65-fold and 19-fold higher serum IgG1 and IgG2a titers against the antigen, respectively, as compared to PLGA-NPs as a delivery system. InAc-NPs have also stimulated the secretion of sIgA at various mucosal sites, including nasal-associated lymphoid tissues (NALTs), lungs, and intestine, and produced a strong memory response indicative of both humoral and cellular immune activation. Overall, by stimulating both systemic and mucosal immunity, InAc-NPs laid a basis for a potential intranasal delivery system for mucosal vaccination.


Subject(s)
Adjuvants, Immunologic/pharmacology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Drug Carriers/pharmacology , Inulin/pharmacology , Adjuvants, Immunologic/chemistry , Administration, Intranasal , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Cells, Cultured , Drug Carriers/chemistry , Drug Evaluation, Preclinical , Humans , Immunity, Mucosal/drug effects , Immunity, Mucosal/immunology , Immunogenicity, Vaccine , Inulin/chemistry , Inulin/immunology , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Mice, Knockout , Nanoparticles/chemistry , Primary Cell Culture , SARS-CoV-2/immunology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL